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1 Introduction

With the technological progress and the rising amounts of data being created, it gets
more and more important to process this data for humans as well as machines. In times
of big data, an emerging issue is creating data swamps, data warehouses, or data lakes
that are not easy to understand. The data is often not enhanced with metadata
and loses its processability and value. Therefore, the Semantic Web [BHLa01] was
created which allows humans as well as machines to process the data much easier.
One key element for describing and connecting data inside the Semantic Web are
ontologies. Ontologies are mostly used to describe a certain domain (e.g., biology,
government, sports). Depending on the precision of the ontology specification, the
notion of this ontology contains several data and conceptual models, including, sets
of terms, classifications, database schemas, or fully axiomatized theories [ShEul3].
The specification of an ontology is done by using terms and relationships between
these terms, which are agreed upon inside this domain. Editors like Protege [NSD*01]
or Neologism 2.0 [LGC*20, ILGC*21] can be used to create ontologies. The use of
ontologies has many advantages, some of which are listed below.

e Ontologies support semantic annotation such that other persons, who are not
familiar with the ontology domain, can understand its meaning.

e Relationships to terms inside an ontology or other ontologies are helpful to
understand the context of the data.

e Ontologies generally facilitate knowledge exchange between humans and machines.

e The (syntactical) validation of data is enhanced with the information provided
in ontologies, such as the hierarchy, data types, and relations.

e The facts and rules in ontologies support the generation and derivation of new
knowledge.

1.1 Motivation

A general best practice is not to create something that already exists, which also
applies to ontologies. Therefore, ontology reuse is very beneficial when creating
new ontologies, as plenty of terms and properties already exist [MJO*17]. Some
hurdles have to be overcome when creating an ontology. One of them is the ontology
creation process that can be simplified using an ontology editor like e.g., Neologism
2.0 JLGC*20, LGC*21]. The basic functionalities of an editor are CRUD (create, read,
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update, delete) functionalities of nodes and relations. One problem that may occur
during ontology creation is spelling errors. Spelling errors provide wrong or misleading
information and change the meaning of the created node or relation. Another issue
when creating an ontology is that the ontology is only available locally and cannot be
processed by other persons or machines.

758 Vocabularies in LOV

Figure 1.1: An overview of all currently available ontologies inside LOV in a cloud-like

view [VAPVTI].

Another hurdle is the specification of metadata for each node and relation. This hurdle
can be overcome by reusing terms from existing ontologies. An issue here is that the
research for existing ontologies that may have the desired meaning of the ontology to be
created can be very time-consuming. The research for ontologies can be done using a
search engine for ontologies. However, the obtained results may include recommended
terms that do not match the meaning of the query. This problem is generally hard
to solve, as the interpretation of suggestions is very subjective and there is no clear
definition of what good suggestions are. A vivid example is the results we obtain
from the Linked Open Vocabularies (LOV) API [VAPVI7] when we query certain
terms. The LOV API is offering a REST service for querying the largest open-source
dataset for ontologies online [VAPVTII]. An overview of the ontologies in LOV can be
seen in Figure The size of a bubble describes the popularity or usage rate of an
ontology i.e., the larger a bubble the more common an ontology is used by datasets or
other ontologies. Querying the input keyword test or rain the LOV API returns the
terms RouteStop and Train, respectively. Both recommended terms have a different
meaning but include the queried terms test and rain as a substring.



1.1 Motivation

The decision for a search engine can be hard as it may be domain-specific. Therefore,
it can be a time-consuming task to find the correct search engine to retrieve the best
fitting terms for the desired ontology. A combination of different search engines for
specific domains could improve the results. There is currently no solution to combining
the knowledge of domain experts and ontology experts to create an overall framework
for recommendations of ontologies.

Most users would create ontologies from scratch as the mentioned effort for research-
ing existing ontologies is high [CrCu05]. Creating a new ontology can be done using
your ontology or as mentioned using existing ones. Nevertheless, it may occur that
an existing domain ontology that was found does not fully cover the concept that
you want to describe. This can be solved by combining multiple existing ontologies
exploiting the specific metadata and relationships that fit your needs. With this best
practice, the processing of ontologies gets much easier, as creating a new ontology out
of different ontologies connects these ontologies in a certain way specified by the user.

Another problem occurs when domain experts want to create ontologies, but do not
have proper knowledge in the field of creating ontologies in general. These hurdles may
slow down or even block the progress of a project. That is why the purpose of this
thesis is to create a batch recommender for ontologies that are created from scratch.
The idea is that a user can create their domain ontology and after doing so, they get
a full recommendation of terms from existing ontologies that they can use for their
created ontology. The aim is to provide a fast prototyping experience with minimal
effort for the user and still being able to make use of existing ontologies, which may
cover the created concept.

techer —responsibleFor-»{exam

N\ /"

teaches studeis

student

Figure 1.2: Example education ontology including two spelling errors created with
Neologism 2.0.

The example in Figure shows an ontology created with Neologism 2.0 [LGC*20,
LGC*21]. Neologism 2.0 is called Neologism in the further course of this thesis.
Neologism is an ontology editor for creating and publishing ontologies and allows other
users to access them. Notice that in the example spelling errors occurred during the
creation of the techer node and the studeis relation. Sending each of these terms to a
search engine would lead to wrong recommendations, as the terms were not correctly
specified. This would slow down the process of obtaining good recommendation results
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for the created ontology. We aim at providing recommendations for each of the nodes
and relations that fit the users’ needs in a good way, while still being able to cover any
domain. This is a specific example for the education domain, so we need a database
with a variety of ontologies to provide general information for any kind of domain.
For this purpose, we have chosen the LOV [VAPVI17] service, as it offers the biggest
open-source data collection for ontologies, which is also available online [VAPVTI].
The LOV service offers a simple API to access and search for ontologies.

The aim of this thesis is to create a customizable batch recommender framework
and integrate this into the structure of an ontology editor with its functionalities
and visualization. We aim at providing the option to not only create an ontology
from scratch but to link it to terms from existing ontologies that are enhanced with
metadata. With that we lift the created ontology to the Semantic Web i.e., replacing
created nodes and relations with classes and properties that already exist. This fosters
a better description of the created ontology and a better possibility of processing it.
To this end, we provide a framework to easily add other recommenders to the batch
recommender to receive user-requested recommendations that are not covered by LOV.
The lifting process should be customizable as we believe that the recommendation area
of ontologies is use-case and user-dependent. This is why the user should be able to
influence the received results.

1.2 Thesis Goals

We solve the problems described in the previous section with the following approach.
We provide a fast prototyping experience where the user creates an ontology, which is
then lifted to the Semantic Web. As a basis, we use an ontology editor, which provides
CRUD operations for ontologies. The lifting process is done, by mapping chosen
terms, which already exist, from a recommendation list to the terms inside the created
ontology. For the recommendations, we put special focus on the LOV service, as it
provides the largest open-source dataset for ontologies. We still offer easy integration
of other recommenders and local ontologies into the batch recommender framework.
This ensures that the user-specific and application-specific recommendations can be
adjusted as needed. The questions to be asked in this thesis to create a batch
recommender for fast prototyping of ontologies are the following;:

RQ 1: How to integrate proper semantics in the fast ontology prototyping process in
a simple way?

RQ 2: How does the infrastructure have to look like?
RQ 3: How to provide good recommendations?
RQ 4: How to integrate a batch recommender into an ontology editor?

The goal is to create a customizable batch recommender framework, which expands
the structure of an ontology editor, that does the following. We continuously support
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the user with possible correctly specified terms for their nodes, while they are creating
or editing nodes or relations in the ontology. After the user created the ontology, we
give the user the option to run a batch recommendation process. The results of this
process are recommendations for each node and relation within the created graph,
which are displayed to the user. The recommendation results are based on a ranking,
so it supports the user in creating the ontology with its desired meaning. The ranking
is based on specific metrics used to address certain issues. The results are displayed
in a simple and readable manner, such that the user can choose the best fitting term
for every node. After performing the lift operation based on user decisions, the terms
within the graph are connected to terms in existing ontologies

The thesis is structured as follows. Chapter [2| presents literature related to our
approach. Chapter [3] and Chapter [4] present the developed concept and realization
with the integration of the batch recommender into an existing editor. We present an
evaluation of our work in Chapter [f] before we conclude the thesis in Chapter [l The
goal is to create a batch recommender for ontologies, which is a standalone solution.
We integrate the recommender into an existing ontology editor.
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We consider the evaluation of recommendations to be very subjective as many different
people may have different opinions on which ontology terms are the best to describe
things. In addition, the visualization may also be an issue, which can influence the
user experience, especially considering the evaluation process of this thesis. In the
following sections, we describe the approach we have chosen and the reasons why we
choose it. Regarding the specified research questions in Section this thesis could
include a variety of topics. We distinguish our approach from other approaches and
explain the limitations of this thesis. There are areas, which are important, but are
not part of this thesis, like:

e Ontology search
e Ontology evaluation
¢ Ontology visualization

This is outlined in more detail in Section Other areas, which are closely related
to our thesis where we analyse the state-of-the-art are the following:

e Ontology creation

Ontology ranking

Ontology recommendation

Ontology matching

Semantic annotation

The areas are explained in Section Section and Section [2.4] respectively.
As ontology ranking and recommendation are closely related, we discuss these topics
together. This applies also to ontology matching and the semantic annotation tools we
found. During our research we discovered that all the mentioned areas are very closely
related and can overlap e.g., search engines may use ontology matching, semantic
annotation, or evaluation strategies to determine scores for rankings. On the other
hand, also recommenders may integrate search engines.
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2.1 Searching, Evaluating, and Visualizing Ontologies

In this section, we give a brief overview of ontology search engines and describe
evaluation and visualization techniques for ontologies. Ontology search engines return
users a ranked list of either ontologies or terms of ontologies for a given query. With
that, it helps users to find and reuse existing knowledge on the web, which benefits
communities by establishing consensus on domain conceptualizations [KVEKL20]. Ontol-
ogy evaluation is the task of measuring the quality of an ontology using specific
metrics to compare the quality of different ontologies [Vran09, [TaAr07]. The ontology
visualization area analyses the most effective ways to display the information of ontolo-
gies to the user [KHL*07].

Currently there exist many search engines for ontologies like e.g., Swoogle [DE.J*04],
OntoSearch [TASBO05, [ZVS104], Ontokhoj [PSLP03], OntoSelect [BuEi08] and Linked
Open Vocabularies (LOV) [VAPV17]. Swoogle is a search engine that focuses on search
functionality. It offers an advanced search, where the user can specify constraints for
SQL queries, for faster searching. OntoSearch is based on observations by ranking
ontologies focusing on the overlap between query terms and index terms, the ratio of
class vs. property definitions, and the level of integration between ontologies. While
OntoKhoj applies ontology classification in form of text classification algorithms and
tools. The classifier determines whether a new ontology belongs to a particular topic
using confidence. The ontologies are retrieved by crawling the web. OntoSelect uses
the GoogleApi to crawl for ontologies and ranks the results based on specific metrics.
Most of these metrics focus on the structure of ontologies. The LOV is not a search
engine like the others but enables searching for vocabulary terms (class, property,
datatype). It is a service that offers the largest open-source database for ontologies on
the web, currently covering 723 ontologies [VAPV1I]. All these search engines focus on
the search criterion, but also include specific ranking mechanisms. Some of them use
ontology matching or classification, while others perform SQL queries specified by the
user. Yet, they do not provide functionalities in regard to the batch recommendation
and ontology creation aspect, as the focus is on providing search functionalities. As
the LOV service offers the largest open-source dataset of ontologies, which also offers
an API for requests, we build our recommender using LOV.

The topic of ontology evaluation is covered broadly, as many authors proposed
many different metrics to evaluate ontologies [Lant16l IvPo20, Verm16, MVMSI6,
BBEI16, Degb17]. This also applies to ontology ranking and therefore we do not create
new ranking methods. Based on the information, we can get from LOV we create
recommendations for each node and relation inside a created ontology. Considering
the ontology reuse aspect, we offer the user the usage of existing ontologies, that may
fit the specified terms. The option of not accepting the provided recommendation
remains. Finally, the created ontology should be published with the used ontologies
providing more value, processability, and new knowledge.

The aspect of visualization is also a very important one, as there is a lot of work
considering visualization techniques [DLSP18, [KTV*08, LPKMI7]. This area is also
out of the scope of this thesis and may be considered for future work, where different
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) null: A quantity of no importance [BabelNet]

® postal code: A code of letters and digits added to a postal address to aid in the sorting of mail [BabelNet]

() zipper: A fastener for locking together two toothed edges by means of a sliding tab [BabelNet]

Figure 2.1: Visualization of a recommendation containing a label, a description, and
a [BabelNet| tag. This visualization concept can be used for displaying
information of a recommendation [LPKMIT].

visualization techniques can be evaluated. We choose a simple technique provided in
[LPKM17], which can be seen in Figure[2.1] This visualization technique fits our needs
and can be easily integrated into the provided structure.

2.2 Ontology Creation Tools

Ontology creation is an area, where we focus on improving the quality of created
ontologies. Ontology creation is the task of creating an ontology with its corresponding
classes and properties and organizing these in a meaningful way |CrCu05]. There
are many different ontology editors like e.g., Protege [NSD*01], Neologism [LGC*20),
LGC*21], NeonToolkit [HLS*08], OntoEdit [GFCo06] or Swoop [KPS*06]. In Protege
[NSD*01], rdfs properties can be used for a better description of terms. Neologism
[LGC*20, ILGC*21] offers a fast and simple way of creating and managing ontologies.
The NeonToolkit [HLS*08] combined with the Watson Plugin (http://kmi.open.ac.
uk/technologies/name/watson/) offers at least to search for descriptions inside the
editor. It allows the user to reuse ontologies provided by Watson. OntoEdit [GFCo06]
is focusing on a clear structured process in three phases for creating ontologies, which
needs more effort from the user and therefore is more time-consuming than Neologism.
In addition, it offers collaborative work on ontologies. In Swoop [KPS*06], you have
a search engine for terms. Yet, no editor offers a recommender for possible ontologies
covering the complete created ontology. As Neologism is suitable to create and manage
ontologies in a simple and quick manner, it makes sense to integrate the recommender
into this editor.

2.3 Ranking Algorithms and Recommendation Tools for
Ontologies

We aim to have a simple design for our batch recommender offering a modular frame-
work. The modularity supports the integration of other recommenders as well as the
adjustment of existing ones. It also offers the integration and adjustment of metrics to
achieve an individual ranking of recommendations. This is explained in Chapter [3|in
more detail. In this section, we compare state-of-the-art recommendation and ranking
concepts and discuss the different approaches. Ontology ranking is the process of
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2.3 Ranking Algorithms and Recommendation Tools for Ontologies

ranking different ontologies or terms of ontologies based on a set of metrics or analytical
measurements that are applied on a set of available ontologies [SASil1]. Ontology
recommendation uses ontology ranking but focuses on providing terms or ontologies
that may fit a given context [MJO*17|. As far as we know, there is currently no batch
recommender for ontologies available that focuses on enhancing the ontology creation
process. The available batch recommenders are either domain-specific or vary in focus.
In the following, we give an overview of different ranking algorithms.

A ranking algorithm is introduced in [Glei20]. The algorithm is focused on entities,
so it is not applicable in the model case yet. For future work, it could also be considered
if the approach could be transformed to be used on ontologies. Another work [SASi11]
reviews different ranking algorithms, which are briefly described in the following:

e AktiveRank is based on different analytical measures using the graph structure
of ontologies.

e The content-based ontology ranking algorithm obtains a list of ontologies from
a search engine. The received ontologies are ranked according to the number of
concept labels in those ontologies, which match a set of terms extracted from
WordNet.

e The Ontology Structure Rank Algorithm is ranking the ontologies using class
names, semantic relation, and ontology structure. The weights of measures can
be adjusted according to the users’ needs and the importance of the application.

e The Semantic-aware importance flooding algorithm also converts the ontology
into a directed graph and performs an iteration fixpoint computation to calculate
the importance of nodes.

The paper states the disadvantages of increased time complexity as well as difficulties
retrieving suitable results, based on different input terms. This is something that
could be used for future work, as these algorithms consider the internal structure of
the ontology (ontology matching), which we do not focus on.

As we need to rank recommendations, we create specific metrics based on the
recommender providing the recommendations, the domain specified by the user, a
prefix and suffix matching, a LOV popularity measuring, and a common vocabulary
metric. These default metrics are addressing certain issues specified in Chapter|3] The
metrics and their weights can be adjusted or removed, and new metrics can be added.
The emphasis in creating these metrics is simplicity. More extensive ranking methods
can be added, as the metric system is designed in a modular way.

In the following, we present some recommender systems, which also include ranking
systems. The ranking algorithms discussed previously were mainly focused on ranking.
There is no clear classification, where to put which work, as the areas overlap. There
exist different recommender systems, but currently none of those covers a batch
recommendation for ontologies focusing on the ontology creation process. Either the
work is domain-specific, has a different focus, or needs a lot of data.
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The authors of [TaAr(07] rank ontologies based on their content and their relevance to
a set of keywords as well as user preferences. The aim is to evaluate ontologies using
their instances and schemas. The input is based on a keyword and the populated
ontology, which then is expanded using WordNet for related keywords and forwarded
to the search engine Swoogle. The related ontologies are then evaluated and ranked
based on specific metrics.

In [ANS*07] the authors perform query expanding via search engines like Wikipedia
and Google. They try to identify the most relevant terms based on a specific topic
and then query the ontology repository. They rank the results based on how many
times each query term appears in the labels of classes, labels of properties, and in
property values for datatype properties (e.g., string-values properties). In addition,
normalization is performed, to consider ontologies that cover a variety of terms more
important than ontologies that cover the same terms very often.

In [LPAIILI] the authors focus on architecture for semantic recommenders for semantic
datasets. Therefore, they transform datasets into a graph structure and assign weights
to nodes and edges for clustering. They use two different recommender approaches,
a memory-based recommender, and a model-based recommender. The first one is
focused on calculating paths starting from a set of given input entities. Reachable
entities from the input are ordered according to a similarity rating that is based on
edge weights. The second approach focuses on creating a model from the dataset
and clustering similar entities. The recommender strategy is based on the respective
scenario and query. The results are then aggregated in a unified result list.

The authors of [GiWi09] focus on the biomedical area and need a large amount
of user specification considering the biology domain. The concept of [Zieg04] focuses
on similarity and neighbourhood measurements. Creating specific trust and rating
functions.

ESKAPE focuses on creating semantic recommendations for dataset input [PPP*18|
PLMel9]. They extended it with a structural recommendation for a term, i.e., for
a given keyword it suggests a graph, with terms that have specific relationships to
that keyword. The aim is to describe the keyword properly with its surrounding
relationships [PLMel19]. This approach has a different focus, while we keep the develop-
ed concept of the user and enhance it with existing ontologies, ESKAPE focuses
on enlarging the concept or creating a semantic model based on a given dataset.
In ESKAPE the recommended concepts are lists that are not bound to ontologies.
We focus on recommending existing terms from ontologies for the created ontology,
that fit the desired meaning of the user. In addition, we want to provide a modular
environment to simply adjust the recommendation result received.

BioSS [MVPP14] and BioPortal [MJO*17| are both approaches, which offer multiple
keyword searches showing ontology sets that could cover a certain amount of the input
keywords. Currently, our approach is focused on general ontologies, with an option to
specify a domain, and therefore, these recommenders would not lead to sufficient results
considering general terms. In contrast to BioPortal and BioSS, our approach focuses
on improving the quality of ontology creation and recommender integration, while
BioSS and BioPortal focus on annotation, searching, and recommending in general.
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The approach of BioPortal or BioSS could be integrated into the batch recommender
in two ways. One way would be the realization of the metrics of BioPortal and BioSS
and analyse if and how they improve the ranking of recommendations. The second
way would be to integrate these two recommenders as sub-recommender for our batch
recommender. With this, we could improve the usage of the domain that can be
specified by giving possibly more accurate results regarding the biological domain.

2.4 Ontology Matching and Semantic Annotation

In this section, we give an overview of state-of-the-art ontology matching and semantic
annotation tools. Omntology matching focuses on finding correspondences between
semantically related entities of ontologies. These correspondences may stand for
equivalence or relations, such as consequence or disjointness between ontology entities
[ShEu13l, [EuSh07]. Semantic annotation related to ontologies is the task of tagging
ontology class instance data and map it into ontology classes [ReHa05]. It can be
considered as the task of linking entities to their semantic description [PKK*03]. The
mapping of terms from existing ontologies on a created ontology can also be considered
as semantic annotation, which is done in the BR. We enrich terms from a created
ontology with the metadata from existing terms. In addition, we give the user the
opportunity to choose the best fitting terms and adjust the retrieved terms.

The ranking of the recommendations could be improved through ontology matching
as well. We do not focus on ontology matching considering the internal structure of an
ontology, as it is much more complex and out of the scope of this thesis. Integrating
the structure of ontologies into the ranking may be problematic in regard to custom
relations that are not frequently used. Matching unknown custom relations that are
not frequently used to existing ones is a hard task to do due to missing information.
In addition, it is not clear, if it leads to better results, as semantic meanings are very
subjective. It needs to be evaluated, in which cases ontology matching could lead to
better results. In this section, we distinguish our batch recommender from semantic
annotation tools and list current problems of ontology matching attempts.

Ontology Matching

Performing ontology matching is a challenging task. Matching systems are typically
evaluated against a reference alignment. One example of a matching tool is proposed
in [HPPa20], which is mainly based on the ontology structure to create matches. The
inputs may be two URLs of the ontologies to be matched together with an URL
referencing an input alignment. The tool focuses on matching different versions of
the same ontology. They use matchers and filters, where matchers create specific
results and filters attach confidence to these results and extract them based on certain
thresholds. For this procedure training data is needed. They measure their tool
based on the Ontology Alignment Evaluation Initiative (OAEI, which is a coordinated
international initiative to forge a consensus of evaluating schema or ontology matching
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methods), which provides different datasets for measurement. Entities, which do not
appear in the reference alignment, cannot be judged.

The authors of [ASPT10] use an RDF graph to exhibit the structure of ontologies for
the purpose of entity verification. The aim is to find common entities across different
ontologies in the same domain. They also consider e.g., the distance between ontologies
using entropy-based distribution. The work of [GLChO05] is based on a weight vector
matching algorithm. The algorithm takes a benchmark ontology and an evaluating
ontology as input. These ontologies are compared to each other, based on a score
vector for each concept (node) within the ontology graph.

A broad variety of tools for instance and schema matching can be found on the
OAEI website http://oaei.ontologymatching.org. As we do not focus on instance
or schema matching, it could be considered for future work. This area remains a big
research topic, where the advantages and disadvantages of using the ontology structure
need to be discovered. It needs to be evaluated, whether the further complexity taking
into account different structural measures, leads to better semantic recommendation
results. Currently, there are problems with matching tools, which we describe in the
following.

The authors of [Hopf20] introduce a gold standard dataset for ontology matching.
Therefore, they focus on the schema of large, automatically constructed, less well-
structured KGs based on DBpedia and NELL. For this, they manually screened both
databases to create a mapping of similar terms between the databases. The developed
gold standard can be used for testing KG matching to gain a deeper understanding
and discovery in this domain. The authors discovered that the major limitation of the
current benchmark is their lack of representation of real-world KGs. The authors state
that the need for specialized matching tools remains significant, to tackle the problem
of KG matching. Three problems were distinguished of the current ontology matching
tools:

1. Current tools can produce high-quality results for well-formed ontologies, such
techniques are not as well-performing when applied on KGs that lack textual
descriptions.

2. Many ontology matching systems utilize structural knowledge available in well-
structured ontologies to refine their alignments. Structural-based techniques can
be difficult to apply when lacking schematic information.

3. Matching strategies used when two resources are from a specific domain setting
are not applicable for domain-independent settings where classes contain informa-
tion about real-world entities described with different terminologies.

Semantic Annotation

The area of semantic annotation is closely related to this thesis, as we annotate
terms with terms from existing ontologies. These existing terms propose metadata
and descriptions, which may fit the created model that is not annotated yet. There
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are many annotation tools described in [ReHa05] and in [UCI*06], which focus on
annotating documents or data instances. The authors of [EMSS00] focus on semi-
automatic engineering of ontologies from text. The tool allows the annotation of
facts within any document by tagging parts of the text and semantically defining its
meaning while focusing on a selected instance. It supports the choice of the most
specific concept for the selected instance. Annotators like [LiDi05] and [PBS*06] focus
on processes and multimedia content, respectively. Both proposed concepts have a
general ontology or core ontology, which is used for annotating the specific domain.

Our goal is to gather a created ontology and create a proper recommendation based
on all the nodes and relations of the ontology and not just parts of it (considering the
example in Figure . The described annotators do not offer the functionality we
provide in regard to improving the quality of an ontology using terms from existing
ontologies. Our recommender focuses on replacing terms of a created ontology and
not a data instance, with fitting terms from existing ontologies to the created ones.

Generally, we think that the evaluation of recommendations is subjective, which
is why we keep the recommendation procedure simple. We do not perform ontology
matching in detail, as we do not consider the graph structure of ontologies, this is out of
the scope of this thesis. We do not know, if this would yield better recommendations,
too. We use the LOV [VAPV17] service presented in this chapter to retrieve recommen-
dations for various domains. For our batch recommender, we provide a modular
environment for customization (adjusting metrics and recommenders and adding local
ontologies) based on the desired needs. Our batch recommender is integrated into
the ontology creation tool Neologism [LGC*20, [LGC*21], which we presented in this
chapter. For this, we use a similar visualization technique as in [LPKMI7] to display
the information of terms properly. The focus is on improving the quality of the ontology
creation process and thus the overall quality of the ontologies created.
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In this chapter, we present the concept of the batch recommender, in the following
called BR. We first show the general framework of the BR and then explain the BR
architecture in detail. These two sections tackle RQ2. After this, we show the workflow
of the BR and how we integrate the BR into an ontology editor with the chosen
visualization technique. Finally, we explain the formulas of the BR and the metrics for
ranking the different recommendations. The goal is to give a user without knowledge
of ontologies the possibility to use existing solutions and to adapt the desired result
based on their needs.

To understand the following sections and chapters, we call the classes and properties
of an ontology that has not been processed by the BR, nodes and relations. A
processed ontology graph lifts nodes and relations to classes and properties from
existing ontologies. Generally, we treat properties like classes. There are also the
following definitions to simplify understanding:

Definition 1 A keyword is the name of a node or relation of the input model.
Definition 2 A label is the name of a class or property.

Definition 3 A Uniform Resource Identifier (URI) is a unique identifier of a class or
property.

Definition 4 A comment contains a description of a class or property.

Definition 5 A recommendation contains a list of labels, a list of comments, the
URI, and the creator of the recommendation.

Definition 6 A sub-recommender is a function, which returns a list of recommenda-
tions for each keyword of the input ontology.

Definition 7 A sub-recommender can be the creator of a recommendation.

Definition 8 The batch recommender returns the top recommendations (lists of classes
and properties) based on the integrated sub-recommenders for each node and relation
of the input ontology.
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3.1 Recommender Framework

In this section, we explain the overall framework of the BR. Although we have a
variety of possible use cases, we focus on ontology editors as the main purpose of
this thesis is to enhance the ontology creation process. The BR can be addressed
via an interface to allow easy use by other programs, humans, or machines. The
input of the interface is the ontology created by the user, while the output is a list
of possible classes or properties for each node or relation inside the input ontology,
respectively. The BR is not supposed to be a new domain recommender since there
are many recommenders already available online (see Chapter [2), but a customizable
recommender that integrates existing approaches based on the user’s needs. The aim is
to enhance the ontology prototyping process and create a simple and fast way to gather
good recommendations for ontologies that were created from scratch. The framework
is shown with an ontology editor to enhance its understanding in Figure [3.1]

Context String Matching

LOV
Recommender

Local
Recommender

Figure 3.1: The standalone BR framework with example use of an ontology editor.
The dashed line separates the two phases.

The BR is divided into two phases, which are explained below. The phases are
superimposed because the first phase supports the outcome of the second phase. The
two phases deal with RQ1:

1. Context-free phase: Give the user Live Support for correcting spelling errors,
while creating an ontology.
2. Context-development phase: This phase is divided into two steps:

a) Preprocessing Step: After the ontology creation is complete, each node and
relation keyword is put into a consistent format through string operations.

b) Recommendation Step: Create an overall recommendation of classes and
properties for the entire the input ontology whose nodes and relations were
transformed in the first step.
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The general BR framework is shown in Figure The Live Support is responsible for
phase 1 and directly communicates with the ontology editor, while phase 2 is divided
into two steps. These two steps are the preprocessing and the recommendation step.
In the second phase, the input is received in the preprocessing step, while the output
is generated in the recommendation step. Inside the recommendation step all sub-
recommenders are used, which are two by default:

e The LOV Recommender recommends ontologies using the LOV API [VAPV1T7].
e The Local Recommender recommends from a predefined ontology set.

The framework allows the user to add or remove sub-recommenders based on their
specific needs as well as to change preferences for each sub-recommender separately.
In addition, the user can add custom ontologies to the predefined ontology set. This
is explained in detail in Section

3.2 Architecture and Modules

In this section, we explain the BR architecture in detail. We explain the modules and
their responsibilities during the preprocessing and recommendation step. Generally,
we offer the user integration of metrics, sub-recommenders, and ontologies of their
choice, by exploiting existing approaches. For this, we create several modules that can
be adjusted by the user based on their specific needs. Figure [3.2] shows the overall
architecture of the BR. We have modules serving different purposes, which we explain
in the following.

| RecommenderManager |
|
| <<use>>
1 <<use>>
| Systeminterface F----2> QueryPreprocessor |
1
: <<use>>
- <<use>> -
| RankingCalculator | - - - - > MetricManager |
1
: <<use>> /:\
<<use>> /'

[ ScoreManager | - - - - - - - - """ ___

Figure 3.2: BR architecture with the different modules and their connections.
The SystemInterface is the starting point of the BR. It receives the input, which are the

nodes and relations of an ontology, and dictates the flow of the BR. It communicates
directly or indirectly with all other modules that are explained in the following.
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The QueryPreprocessor applies a clean-up process to the node and relation keywords
of the input ontology and is the second point through which the BR flow passes by. This
module is responsible for the preprocessing step described in the previous section. This
is done because of problems that can occur when creating an ontology from scratch.
These problems are explained in detail in Section [3.3.1

The next module is the RecommenderManager, which is focused on managing the
sub-recommenders. It serves the purpose of providing recommendations from all sub-
recommenders for all nodes and relations of the input ontology. As explained in
Section [3.1| we have the LOVRecommender and the LocalRecommender implemented
by default. The RecommenderManager is also the reference point for integrating new
sub-recommenders that should be used inside the BR or disabling the existing ones.

The RankingCalculator is focused on calculating the scores for the recommendations
provided from the RecommenderManager. For the calculation, the MetricManager
and the ScoreManager are used. While the MetricManager manages all the metrics
used for the calculation and their corresponding weights, it is also the reference
point for integrating or deactivating the metrics used for the score calculation. The
ScoreManager, on the other hand, manages the scores calculated by the various metrics
specified in the MetricManager. The ScoreManager also uses the MetricManager to
obtain the weights of the metrics required for the final calculation of the score.

3.3 Workflow and Integration

In this section, we explain the workflow of the BR with its integration into an ontology
editor of our choice. We also explain the visualization technique and its integration
into the ontology editor. With the adjustment of the workflow, we tackle RQ1 here.

Enter name >| Create node
! [}
1 1
e === >| Live support == === === '

Figure 3.3: The enhanced process of creating a node in an ontology editor. The red
box shows our added contribution.

The first starting point of integration into an editor is to adjust the process of how
nodes and relations are created and edited with the BR. At this point of the ontology
creation process, the first phase is applied. Figure [3.3| shows the adjustment of the
node creation process, which also applies to relations. Live Support is added to help
during the creation and editing process of nodes and relations within an ontology. It
is helpful for the batch recommendation process as it prevents and corrects spelling
errors. The results may be worse if the user provides an ontology with spelling errors,
as this will lead to incorrect recommendations. With the correct specification, the
query process is improved for the second phase.
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The adjustment of the ontology creation process can be seen in Figure During
the ontology creation, the node creation from Figure is repeated multiple times.
After the user finished creating an ontology, the communication process with the BR
interface can be started. The BR returns a list of recommendations for each node
and relation separately. These lists of recommendations are then displayed inside the
ontology editor and allow the user to choose from the provided results. Finally, the
user can update the ontology with the selected classes and properties from the provided
recommendations or keep their nodes and relations. This final step performs the lifting
process of the ontology, where the ontology which was created from scratch is lifted to
the semantic web, by replacing created nodes and relations with existing classes and
properties.

| Create graph } :I Save graph |

4
| Request to recommenderservice |- ->| Receive recommendations |
]

- - - Replace terms with chosen
| Display recommendations |- - >| Choose recommendations |- -> recommendations

Figure 3.4: The process of the improved ontology creation process with batch recom-
mendation. The red boxes show our added contributions, which are the
communication with the BR interface and the interactions needed for
applying the results.

We have multiple steps between the request and receive phase, which we briefly explain
in the following. The missing steps are the steps of the context-development phase,
which are inside the workflow of the BR and can be seen in Figure After receiving
the request, the preprocessing step starts, which assists the recommendation step. In
the preprocessing step we address several issues that may arise when creating an
ontology or a dataset in general (see Section . These issues are solved, by
transforming the input words of the nodes and relations via string matching. The
results worsen, if the user provides an ontology with terms including characters with
no meaning, as it leads to wrong recommendations. With the preprocessing in the
first step, the query process in the second step is enhanced.

The preprocessing step is followed by the recommendation step, where we receive
recommendations from all existing sub-recommenders based on the nodes and relations
of the input ontology. After gathering the recommendations, the final score for each
recommendation is calculated based on the existing metrics and their corresponding
weights. Each metric calculates its score separately. Finally, the scores are normalized
and the top recommendations for each node and relation are returned. The nodes and
relations can then be lifted to classes and properties from existing ontologies.

In the following we tackle RQ3. For the results of the batch recommendation, we aim
to provide the possibility for the user to choose the best fitting term for a node. The
terms are displayed in a specific order based on a score for each recommendation. This
score is calculated via various metrics, which can be adjusted using their corresponding
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Input preprocessing

v
Gather recommendations

v
Score calculation

v
Return top n recommendations

Figure 3.5: The BatchRecommender process overview.

weights. This score calculation is the key for ranking the recommendations in the BR.
As we think that it is very subjective if a recommendation fits the desired meaning, we
provide the functionalities to improve the recommendations based on certain interests
or use-cases, by changing or adding metrics and their weights. This customization
can also be done by adding local ontologies and sub-recommenders. The developed
metrics and used rankings are explained in Section [3.4] In addition, the user can save
time, if they just intend to accept the best recommendation provided from the BR as
we preselect the first recommendations. In regard to visualizing the recommendations
properly, we choose a visualization concept similar to Figure [2.1} This decision is
based on the research from Section [2.I] This visualization offers the user the option
to see the results directly. The information of each recommendation is displayed by
replacing the BabelNet tag with the ontology URI and adding the calculated score,
keeping the label and description of the recommendation.

After the user decided, which recommendations they want to keep based on the
given recommendations, they can directly lift the created ontology to the Semantic
Web. Concretely, replacing nodes and relations with the chosen classes and properties
from existing ontologies and thereby lifting the ontology to the Semantic Web. It is
also possible to choose a better fitting term from the list or even keep the term the
user entered (e.g., if the results are not sufficient, or there are no recommendations
available).

We additionally give the user the option to specify a certain domain to get better
results. It is optional but may lead to increased user satisfaction, as the user already
knows in advance what kind of ontology they intend to create. We implement a metric
that uses the domain, if it has been specified by the user, for score calculation. We
leave the opportunity for future work, to use the domain tag for further improvement
of the recommendations. It could be used to integrate other domain-recommenders.
One example may be the integration of BioPortal [MJJO*17] for the biological domain.
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3.3.1 Input Preprocessing and Live Support

In the following we tackle RQ3. As mentioned beforehand we perform preprocessing
on the input ontology which serves as the query input for the BR. We use the keywords
from nodes and relations of the ontology as input. There are ways to specify these
keywords during ontology creation, which may lead to several problems. Regarding
our own experience and the analysis of different datasets in [PLP*1§|, we decide to
tackle some of the issues that can occur to provide better recommendations. The
authors of [PLP*18| define different problem classes where a label can belong to. As
many of the classes are challenging and out of the scope of the thesis, we focus on
problem classes, which have a big influence and can be solved in a simple way. In the
following, we show the excerpt of the problem classes we distinguish for our use case
from [PLP*18] and afterwards describe the solutions we choose for these classes.

e Misspelling: The person who labelled the data made a simple mistake. Examples
are Acess Point, Telehphone Number, etc.

e Splitting Characters: Beside white spaces in labels, some labels contained special
characters (e.g., "’ or ’-’) to split words.

e Camel Case Input: Similar to splitting characters, some persons tend to split
words using the camel case syntax (e.g., StreetNumber).

We solve the problem classes of Splitting Characters by replacing the splitting characters
with spaces (e.g., telephone_number is transformed into telephone number). For the
Camel Case Input problem class, we distinguish all upper-case letters (except the
first one) and put a space in front of all upper case letters (e.g., telephoneNumber
is transformed into telephone Number). The transformation of a class or property
keyword is done by applying the following formula:

f : String — String

The function f transforms a keyword k € K into a keyword &', which is neither in the
Splitting Characters problem class nor in the Camel Case Input problem class.

f(k;) =k}, Vk; € K,
where K = C U P,
and C = class keywords

and P = property keywords

Regarding the Misspelling problem class, we use a dictionary and let the user decide
whether to use the suggestions provided from the dictionary (see Section . We
choose this way, as we do not want to abbreviate the input strings from the user more
than correcting the last two problem classes but give the user the choice to correct
mistakes themselves.
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3.4 Formal Recommender and Metrics Description

In this section, we describe the recommender formulas of the BR, which also tackle
RQ3. These formulas are divided into two categories:

e The general BR formula with the ontology keywords as input and the recommenda-
tion lists as an output as well as the corresponding formula for any sub-recommender.

e The metrics that we developed to create a better ranking of the recommendations.

3.4.1 Recommender Formulas

In the following, the BR and the sub-recommender formulas are explained. While the
BR formula explains the overall input and output of the BR, the sub-recommender
formula explains the underlying concept of the sub-recommender functions.

Batch Recommender Formula

Consider K= the set of keywords from the nodes and relations of the input ontology.
T = the set of terms (all classes and properties from existing ontologies). A class or
property t; : U x L x C' x R, where t; = (u;,1;,¢;, C;) and u; € U,U = set of URISs, I; €
L, L = set of labels, ¢; € C,C = set of comments, and C; € R, R = set of available
sub-recommenders (creators), ¢ € N, then we have the BR formula as following;:

Km (TxR)™"

f : (k;17 . ’km) — (t].].)t].?) e 7t1n)7 sty (tm17tm25 .. atmn)
#m : number of keywords

#n : number of final recommendations per keyword

The number of final recommendations is < n as there may be cases with less than
n or no recommendations. The batch recommender formula maps each of the m
keywords on < n sorted recommendations with their corresponding scores. The
recommendations are sorted based on the score.

Sub-Recommender Formula

The sub-recommender formula is used for calculation by each sub-recommender r € R,
where R is the set of all sub-recommenders. Thereby each sub-recommender may
have a different number of recommendations available for a keyword k£ € K. The
sub-recommenders do not assign a score to the recommendations but retrieve the
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recommendations. We define the formula of a sub-recommender as following:
K™ TP

f : (kl, c. ,km) — {(tn,tlg, ce 7t1n1)7 e (tml,tmg, c. ,tmnm)},

m
where p = E n;
i=1

#n; : number of recommendations of keyword k;

#p : number of all recommendations of sub-recommender

3.4.2 Metric Formulas and Final Score Calculation

We have different metrics to calculate the score for each recommendation. The metrics
provided are the basis for ranking the different recommendations, with which we
combine the input ontology so that the recommendations are:

e domain related, which means we integrate the domain specified by the user into
the ranking, checking label and comment of the recommendation for the domain
(DomainMetric).

e related in such a way that simple semantic errors not intended by the user do
not occur (PreSufMetric).

e description related, which means recommendations with a better description
through labels and comments are preferred (DescriptionMetric).

e recommender related, which means that we take into account the user’s preferences
regarding the specified recommenders (CreatorMetric).

e related in such a way, that the set of different ontologies inside the recommenda-
tions for each keyword is minimized or maximized (CommonVocabMetric).

e LOV related, which means we use the metadata provided by LOV for the ranking
(LOVMetric).

These metrics serve for the calculation of the overall score. For this calculation we
need to declare the following:

S:Zpr

reR
#s : number of all recommendations, Vr € R

The calculation of s is needed to cover the number of terms, which are used inside the
metrics. Note that p is reused from the previous section marked with the corresponding
recommender 7 € R as the index. The default metrics available are listed below:
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DomainMetric

Let d € D be a chosen domain, where D is the set of all available domains. Then the
DomainMetric formula is defined as following:

f:T°xDw— R

where we assign each recommended term ¢ € T a value from R based on the chosen
domain d € D.

f(tlv"'vtsvd) = (1’1,...,333)

and z; = wa * g(li;, d) + wg * g(c;, d),
where g : S x S — {0,1},

1 if a contains b

0 otherwise

and g(a,b) = {

where the weights w, and wg focus on the preferences of the occurrence of the domain
either inside the label or the comment section of the recommendation.

CreatorMetric

Let » € R be a sub-recommender. Then the CreatorMetric formula is defined as
following;:

f:T° — R®,

where we assign each recommended term ¢ € T a value from R based on the sub-
recommender preferences.

f(tl,...,ts) = (SEl,...,CL‘S)
x; = Z wy * g(r, Cy)

VreR
where g : R x R+ {0,1},

1 ifaequalsb

0 otherwise

and g(a,b) = {

where the sub-recommender preferences are specified by the weight w, for each sub-
recommender, respectively.
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CommonVocabMetric

The following metric is based on calculating the number of common vocabularies within
the recommendations for each keyword separately. Therefore, the CommonVocabMetric
formula is defined as following:

f:T°— R?,

where we assign each recommended term ¢ € T a value from R based on whether the
ontology appears in the recommendation lists of each keyword.

ft1, ... ts) = (z1,...,xs)
Gp=1u1,...,uj, EN ke K
G, : recommendations of keyword k ,Vr € R

v =we Y g(ui, G),

VkeK
where g : U x U7 — N,
and g(a, B) = |aU B].

Consider the following example: We have three keywords, and an ontology appears in
one or multiple recommendations in the recommendation lists of two keywords, then
the score assigned to each recommendation from this ontology would be 2. Adjusting
the weight w. leads to the following results. The lower or higher this weight, the lower
or higher are the preferences of maximizing or minimizing the diversity of ontologies
inside the recommendations, respectively.

PreSufMetric

The following metric enhances the semantic meaning of the keywords. Therefore, the
PreSufMetric formula is defined as following:

f:T° = R?,
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where we assign each recommended term ¢ € T a value from R based on the keyword
occurrence inside the label of the term.

fltr, ..o ts) = (z1,...,xs),

x; = Wps * g(li, ki) + we * h(l;, ki) +wp x p(li, ki), i € NJK; € K,
where k; is the keyword that belongs to the term t¢;,

and g, h,p: L x K — {0,1},

1 if b is prefix or suffix of a

where g(a,b) = {

0 otherwise

1 if b equals a
where h(a,b) = {0 otherwise

1 if b is a substring that is no prefix or suffix of a

where p(% b) = {0 otherwise

The weight w,s describes the preference of the keyword to occur either as a prefix or
suffix of the label of the recommendation. Note that prefix and suffix here, need to
have a space separation to the following part or the part beforehand inside the label.
Consider this example: Let player be the keyword, the label football player would get
a higher score than the word ballplayer. This way we support a better semantic value
improving results for the rouTeStop and train example in Section The weights
we and wy, describe the preference of the keyword to be equal or a substring (not prefix
or suffix) of the label of the recommendation.

DescriptionMetric

The following metric prefers recommendations, which offer more value through metadata.
Basically, preferring recommendations that have a label as well as comment enhancing
the meaning of a node or relation. Therefore, the DescriptionMetric formula is
defined as follows:

f:T°— R®,

where we assign each recommended term ¢ € T a value from R based on the presence
of a label and a comment.

f(t17"'7ts) = (xlv"‘axs)v

x; = wg * 9(li, &),

and g : L x C'— {0,1},

0 if a or b is empty

1 otherwise

and g(a,b) = {

The weight wy describes the preference of the recommendation to have a label as well
as a comment. This improves the description of the node or relation through metadata.
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3 Concept

LOVMetric

Let t' € T be defined as an extension of the regular ¢ defined before, where ¢, =
(t;, 0i,€i,8;) and 0; = the number of the occurrences in datasets parameter, e; = the
number of the reused by datasets parameter, and s; = the score from LOV. Note that
0i, ¢;, and s; are metadata parameters from the LOV service. Then the LOVMetric
formula is defined as follows:

f:T°—>R®

where we assign each recommended term ¢t € T a value from R based on the metadata
from the LOV service. This metric can be seen as a popularity metric, taking into
account how popular an ontology is in regard to LOV.

f(tl, N ,ts) = (1'1, e ,.CES),
T = ws * g(8;) + we x h(e;) + wo * p(0;)
where g, h,p: R — {0,1},

and g(a) = {

1 ifa>n,

0 otherwise

1 ifa>n,

and h(a) = {

0 otherwise

1 ifa>n~g

and p(a) = {

0 otherwise

Note that this metric is only used for recommendations obtained from LOV. The
parameters 7y, 7o g specify the thresholds for the score from LOV, the reused by
datasets parameter obtained from LOV, and the occurrence in datasets parameter
obtained from LOV. Adjusting the weights w, and w, leads to the following results.
The lower or higher these weights are, the lower or higher are the preferences of
ontologies that are frequently reused. The weight w, describes the preference of the
score obtained from LOV itself and thus the preference of the metrics defined by the
LOV service.

Finalized Score Formula

We return the top n recommendations sorted based on the score. For the sorting, we
need to merge the scores for each recommendation, from each metric. The finalized
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3.4 Formal Recommender and Metrics Description

score for each recommended term ¢t € T is applied by the formula:

M : set of all metrics

#j + |M]|
Utm © the score of recommendation t € T' by metric m € M
fiRY = R,

then f({’Ull, N ,Ulj},. Cey {’031, ce ,’Usj}) = (.’El, PN ,SL‘S),

where x; = E Vi, * Wi, and Vi € T®
VYmeM

Allin all, the presented modular architecture offers the integration of new recommenders
and metrics as well as the customization of the existing ones. As we already mentioned
there are some reference points where the user can integrate several things to transform
the default BR into their desired BR. In the following chapter, we explain these
reference points as well as the architectural implementation details of the BR and
how we integrate the BR into an existing ontology editor.
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4 Realization

In this chapter, we describe the implementation of the recommender architecture from
Chapter [3|in detail. For this, we explain interfaces, classes, and the internal structure.
We also describe the instructions needed for the customization process regarding how
to add or remove metrics, recommenders, or ontologies inside the recommender. In
addition, we demonstrate how we integrate and use our recommender inside Neologism
by showing the workflow of the BR in combination with the editor.

4.1 Architecture Implementation and Customization

In the following, we explain the architecture of Figure|3.1|in more detail. The following
sections particularly tackle RQ2 and RQ4. The BR was implemented with the Java
SDK version 1.8. We reused the recommender project of Neologism that was already
existing (https://github.com/Semantic-Society/Recommender). The BR is built
on top of the existing recommender. We reused as much as possible but adjusted and
created additional classes based on the created concept.

4.1.1 Architecture and Modules Implementation

The following explanations of our data types and interfaces enhance the understanding
of the following sections:

e The Recommendation and Recommendations classes are reused from the existing
part of the recommender. The Recommendations class contains a list of Recommen-
dation instances and the name of the creator as a String. The Recommendation
class contains a list of comments, a list of labels, a URI, and the ontology name.

e The BatchRecommendations class is an extension of Recommendations, with the
corresponding keyword (class or property) in String format.

e LOVRecommendation extends the Recommendation class to use the metadata
provided from the LOV service. The metadata includes the parameters occurren-
cesInDataset and reusedByDataset as int, and score as double.

e The RatedRecommendation class extends the Recommendation class with a score
specified as double.

e The BatchQuery class is the representation of the query in the recommender
(see Listing [4.6)). We have a list of class keywords, a list of property keywords,
a domain as String, and an int for the recommendation limit.
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4.1 Architecture Implementation and Customization

e The BatchRecommender interface (see Figure[4.1)) is the interface that needs to be
implemented by all sub-recommenders, which are used for obtaining recommenda-
tions.

e The Metric abstract class (see Figure [4.2) is the class that needs to be extended
by all metrics, which are used for calculating the score of the recommendations.

e The Builder class is used to create cleaned instances of recommendations when
using the cleaning process to obtain only English recommendations. This class
is reused from the existing part of the recommender.

In addition, the word keyword stands for the label specified inside the input ontology
for any node or relation i.e., the labels for all nodes and relations of the input ontology
are unified in keywords.

RESTController and QueryPreprocessor

In the following, we explain Figure[3.2]and its workflow by starting with the SystemIn-
terface, which is replaced by the RESTController. It dictates the flow and forwards
the BatchQuery to the QueryPreprocessor. The QueryPreprocessor executes the
preprocessing step as described in Section The original and transformed keyword
are saved inside a map in the QueryPreprocessor. The resulting transformed Batch-
Query is forwarded by the RESTController to the RecommenderManager. The collected
recommendations for each keyword from the RecommenderManager are passed to the
RankingCalculator in a Map<String, List<Recommendations>> format. The String
describes the keyword, while the List<Recommendations> contains the collected recom-
mendations from each sub-recommender related to that keyword. The final result is
then received from the RankingCalculator as a List<BatchRecommendations>. The
keywords of the result are then transformed back to the original keywords using the
map of the QueryPreprocessor described above. The final result is then returned by
the RESTController as a response.

RankingCalculator

The RESTController uses the RankingCalulator to collect the final recommendation
lists for all keywords. The ScoreManager is used to add the MetricScore calculated
by each metric for the Map<String, List<Recommendations>>, that was created by
the RecommenderManager. The defined metrics, which are used for calculation, are
obtained from the MetricManager. Instances of the RatedRecommendation class are
used to specify the final score that was calculated by the metrics for each keyword.
The formula used for the final score calculation is explained in Section We return a
List<BatchRecommendations> that contains the amount of the top n RatedRecommen-
dations for each keyword, which is the response returned from the RESTController.
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ScoreManager

Inside the ScoreManager the keywordMetricScores, as well as keywordFinalScores
maps, are specified. While the first contains MetricScore instances, the second
contains Score instances, both using a keyword in String format as the key. The
difference is that the MetricScore class is bound by the MetricId, which indicates the
Metric used to calculate the score for the recommendation. The keywordFinalScores
map is created, when all metrics finished their calculations, by using the corresponding
weights for each Metric defined inside the MetricManager for the final calculation (see
Section [3.4). The Score instances inside the keywordFinalScores map contain the
finalized score for a specific recommendation and are used by the RankingCalculator
to create RatedRecommendation instances for each recommendation.

RecommenderManager and MetricManager

The RecommenderManager is responsible for several tasks, which are explained in the
following;:

e Managing the sub-recommenders that are used to collect the recommendations
based on the input model.

e Managing the domain that is specified inside the input model as a String.

e Receiving the recommendations of all sub-recommenders based on the nodes and
relations from the input model.

e Unifying the Recommendations from all different sub-recommenders inside a
Map<String, List<Recommendations>>.

private RecommenderManager () {
recommenders .add (new LovBatchRecommender ()) ;
recommenders.add(LocalVocabLoader .PredefinedVocab.
DUBLIN_CORE_TERMS) ;
recommenders.add(LocalVocabLoader .PredefinedVocab.DCAT) ;

}

Listing 4.1: Excerpt of the RecommenderManager class with three sub-recommender
specifications. Two LocalRecommenders, using the DCTerms and DCAT
ontologies, and the LOVRecommender.

Inside the MetricManager the used metrics and their corresponding weights are specified
(see Listing. The current metrics implemented are the DomainMetric, the Creator-
Metric, the LOVMetric, the PreSufMetric, the DescriptionMetric, and the Common-—
VocabMetric.
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4.1.2 Customization of Sub-Recommenders, Ontologies, and Metrics

The user can add and remove sub-recommenders, local ontologies, and metrics. In
addition, the user can easily adjust the weight of a metric inside the MetricManager.
In the following, we explain the steps on how to perform the customization with
regard to the previously mentioned aspects. Currently, the LOVRecommender and
several LocalVocabLoader instances are in use as sub-recommenders for the BR. The
process of adding a new sub-recommender is similar to the process of adding a sub-
recommender for a local ontology, but the latter requires more steps.

<<Interface>>
BatchRecommender

+String getRecommenderName()
+Map<String,Recommendations> recommend(BatchQuery query)
+Map<String,Recommendations> getPropertiesForClass(BatchQuery query)

Figure 4.1: The BatchRecommender interface. Any recommender that is supposed to
be used to collect recommendations, must implement this interface.

Note that the LocalVocabLoader was already implemented, we reused this class and
implemented the BatchRecommender interface (see Figure . With this implemen-
tation, instances of the LocalVocabLoader can be used as local sub-recommenders.
The cleanAl1ExceptEnglish() (see Listing method is reused for retrieving only
recommendations in English. This method must be adjusted when adding a customized
recommendation (like the LOVRecommendation for the LOVRecommender).

public Recommendations cleanAllExceptEnglish() {
if (original instanceof LOVRecommendation) {

b.addLOVParams (((LOVRecommendation) original).
getScore (), ...);

Listing 4.2: The cleanAl1ExceptEnglish() method with adjustments based on the
LOVRecommendation. The addLOVParams method is executed if the
recommendation is a LOVRecommendation.

For adding a sub-recommender that is not a local ontology, but an external recommender
(e.g., BioPortal) the following steps need to be executed.
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4 Realization

1. Create a recommender class (e.g., BioPortalRecommender) that implements the
BatchRecommender interface of Figure

2. Optional: If the recommender provides specific metadata that you want to use,
you need to create a subclass of the Recommendation class, which specifies the
metadata (like the LOVRecommendation class).

e For this, the three methods specified in Figure must be added to the
recommender. The first method returns the name of the recommender, while
the second and the third focus on the retrieval of the class and property
recommendations, respectively.

1 public static class Builder {

10

11

12

13

14

15

16

17

private Double score;
private boolean isLOVRecommendation;

public Builder addLOVParams (double score, int
occurrenceInDatasets, int reusedByDatasets) {
this.score = score;

this.isLOVRecommendation = true;
return this;

public Recommendation build () {
if (isLOVRecommendation) {
return new LOVRecommendation(URI, ontology,
ImmutablelList.copy0f (labels), ImmutablelList.
copyOf (comments), score, ...);

Listing 4.3: Builder adjustment based on the LOVRecommendation. Showing a subset
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of the parameters needed for the LOVRecommendation, its corresponding
addLOVParams method, and the adjustment of the build method.

e In addition, the Builder must be adjusted like in Listing

(1) Add the parameters which are needed for the metadata like e.g., the score for
the LOVRecommendation.

(2) Add the method, to set these parameters as in lines 6-11 in Listing Note
that you should add a boolean for your specific recommendation like the
1sLOVRecommendation needed for the final build method.

(3) Adjust the build method returning your specific recommendation, if the previ-
ously specified boolean parameter like isLOVRecommendation is true.
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4.1 Architecture Implementation and Customization

(4) Finally, inside the cleanAl1ExceptEnglish() method check the type of the
recommendation for your specific recommendation type and run the method
created in step 2 like in Listing

3. An instance of the recommender needs to be added into the RecommenderMana-

ger like in Listing

In the following we explain the procedure for adding a sub-recommender for a local
ontology using the LocalVocabloader class:

1. Copy your ontology into the resource folder src\main\resources.

2. Create the specific LocalVocabLoader instance by using the load function like

in Listing Note that the name of the instance should be integrated into the
CreatorMetric if this sub-recommender should have a specific preference. The
parameters of the load function are described in the following:

(1) describes the filename of the resource (e.g., deat.ttl).

(2) describes the language of the file (currently only TURTLE is available).
(3) describes the ontology name (e.g., dcat).
(4)

4) describes the common prefix inside the turtle file (e.g., in the case of
dcat :keyword the common prefix would be dcat).

. The new LocalVocabloader instance needs to be added into the Recommender-

Manager as in Listing using the name of the instance specified in step 2)
before.

public static class PredefinedVocab {

}

public static final LocalVocabLoader DCAT = load("dcat
.ttl", Lang.TURTLE, "DCAT", "dcat");
public static final LocalVocabLoader DUBLIN_CORE_TERMS
= load("dcterms.ttl", Lang.TURTLE, "DCTERMS",
"dcterms") ;

Listing 4.4: Excerpt of the PredefinedVocab class with local ontologies, that are

loaded as LocalVocabLoader instances. The input parameters of the
load method are the ontology file as .ttl, the language (currently only
Lang.TURTLE), the ontology name, and the ontology prefix.

Adding, Adjusting, and Removing Metrics

A user can add, adjust, and remove metrics and their corresponding weights. Note that
the use of specific data of specific recommendations e.g., LOVRecommendation requires
a distinction between the different types of recommendations within the metric. In
the following we explain the process of adding a new metric with its corresponding
weights:
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Metric

-MetriclD id
+Map<String,List<MetricScore>> calculateScore(Map<String,List<Recommendations>>)

Figure 4.2: The abstract class Metric. Any metric that is to be used to calculate the
score calculation must extend this class.

1. Create a metric that extends the abstract class Metric, which can be seen in

Figure [4.2]
2. Specify a new MetricId for the created metric.

3. Add the created metric to the MetricManager using the specified MetricId as

in Listing

4. Add the weight for the created metric in the MetricManager using the specified
MetricId as in Listing [4.5

private MetricManager () {
metrics.add(new CreatorMetric(MetricId.CREATOR)) ;
metrics.add(new DomainMetric(MetricId.DOMAIN)) ;
metrics.add (new CommonVocabMetric(MetricId.COMMONVOCAB)) ;

metricWeights.put(MetricId.CREATOR, 1.0);
metricWeights.put (MetricId.COMMONVOCAB, 1.0);
metricWeights.put (MetricId.DOMAIN, 1.0);

}

Listing 4.5: Excerpt of the MetricManager class with metrics, which are used for
calculating the scores for each recommendation, and their corresponding
weights.

4.2 Integration into Neologism 2.0

Currently, Neologism offers the creation and publication of ontologies. In this section,
we explain the integration of the BR into Neologism and how we extend the functionali-
ties that support the user during the ontology creation process. More precisely, we
explain how we integrate the context-free phase in Neologism and how we communicate
with the BR to perform the context-development phase. With this we tackle RQ2. The
context-free phase is directly integrated into Neologism and is part of the Neologism
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g

ols

Neologism Qe LB
teacher——teaches—>»|student
Jucation #*
\ /
responsibleFor studies
Recommendation Limit: \ /
exam
View & Edit List

Figure 4.3: The ontology from Figure specified correctly with the use of the Live
Support from Figure [£.4] On the left are basic Neologism functionalities
and highlighted in red are the integrated Get BatchRecommendation
button, the regulator for the number of recommendations, and the optional
domain specification.

architecture, which is implemented in Angular2 and Typescript. The context-free
phase is performed by using the Live Support. Together with the Live Support, the
optional domain specification is integrated directly into Neologism. To make use of the
DomainMetric (see Section the domain needs to be specified by the user. For
the context-development phase, we explain the communication with the BR, where we
expand the Java code of the existing recommender inside Neologism. Figure [4.3|shows
an overview of Neologism with the improved example ontology from Figure [1.2

4.2.1 Live Support and Optional Domain Specification

In this section, we approach RQ2, by explaining the Live Support and the optional
domain specification. The input for the Live Support is the keyword entered by
the user in String format while creating or editing a node or relation. The Live
Support provides a list of suggestions for the user while typing. As mentioned, the
Live Support is responsible for the context-free phase. With the Live Support, we focus
on the prevention and correction of spelling errors. As the frontend of Neologism is
implemented in Angular2, we use a compatible spellchecker. A tool that provides
functionalities to give suggestions for an input keyword in Angular2 is the ngx-
spellchecker. We integrated the ngx-spellchecker in Neologism in the following
way. When the user creates or edits a node or relation, a dropdown-list of suggestions
for the typed keyword is presented as in Figure 1.4l The Figure shows the suggestions
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for the wrongly specified techer keyword from Figure In this case, selecting the
second element of the suggestion list would lead to the desired meaning and therefore
to a node with a correctly specified keyword. For the ngx-spellchecker, we used
version 1.0.5 with the normalized_en-US.dic dictionary, as we focus on the English
language.

Add Class &

teched

teacher

Descriptic

tech

teaser

R

Figure 4.4: A list of suggestions using the ngx-spellchecker for the keyword techer
displayed. The second suggestion shows the desired keyword.

As mentioned in Chapter [3] we offer the option for the user to specify a domain.
The specified domain tag is used in String format to calculate the DomainMetric
specified in Section Another use-case for the domain tag can be the usage of
specific recommenders for their corresponding domain. As mentioned in Chapter
BioPortal could be used to gather recommendations for the biological domain. With
an extension of the DomainMetric recommendations from domain-recommenders can
get a higher score and therefore, a higher preference than recommendations from other
recommenders. The integration of domain-recommenders could be a customization
step based on the use-case and user preferences. The domain can be specified by
pressing the icon next to the Domain: field in Figure and enter a domain as it
can be seen on the right. After typing the new domain, the user must confirm their
change by pressing the Enter key.

Domain:  #° Domain:  [Ysiilesliden

Figure 4.5: The optional domain specification. The left side shows the domain label
with an edit button. The right side shows a sample input during editing.
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4.2.2 Preprocessing and Recommendation Step

In contrast to the Live Support, the preprocessing and recommendation step are
performed inside the BR architecture by certain modules. The BR implementation
is set up as a REST-based service, such that Neologism or other programs can use
this service. The service can be queried via the following URL: http://localhost:
8080/recommender/batchRecommender) using the body structure that can be seen in
Listing defining the domain, a recommendation limit, classes, and properties of the
input model.

{
"domain": "education",
"classes": ["teacher", "exam", "student"],
"properties":["responsibleFor", "teaches","studies"],
"limit":10

X

Listing 4.6: Request for the BatchRecommender based on the improved example of
Figure using the Live Support. The domain is specified as String,
the limit is specified as an Integer, and classes and properties as
List<String>.

The contezt-development phase starts when the user marks their ontology draft as final
by clicking the Get BatchRecommendations button, which can be seen in Figure [4.3
A loading screen (see Figure is shown to confirm that the request is being
processed. We use the created nodes and relations of the user as input. For this,
we transform the nodes and relations into lists of Strings, containing the node and
relation keywords. We create a request containing the lists and the domain (see
Figure as in Listing The limit (see Listing of recommendations that
are received from the BR can be set by using the integrated regulator in Figure [4.6
The regulator functionality was integrated as a result of the evaluation in Chapter
After execution of a query against the BR the preprocessing step begins. In the
preprocessing step, we mainly perform String matching operations, which are used to
solve the problem classes specified in Section with their corresponding solution.
The recommendation step receives the output of the preprocessing step as input. For
the recommendation step, we use the implemented sub-recommenders to receive all
possible recommendations. We put a special focus on using the LOV API, as it
provides the largest open-source dataset for ontologies available online. Therefore, we

Recommendation Limit:

———

Figure 4.6: The regulator with which the recommendations limit can be specified.
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mainly focus on explaining the LOV recommender for this step. Each String of the
classes list and properties list of the body specified in the request (see Listing [4.6))
is forwarded to the LOV API. The documentation of the LOV API can be found
here [VAPV1I]. The recommendations obtained from the LOV API are then used
together with the recommendations obtained from the local recommenders. The local
recommenders use each String of the lists to perform a search through the existing
local ontologies.

Keywors; student

O URI: nt wportaliSiudent Label: Student Comment: Student Score: 1.00

O URI: htipy/ ident Label: Student Comment: Student of the course. Score: 0.98

O URI: http:f/semanticscier esource/SI0 000405 Label: student Comment: A student is an individual who is attends an educational institution. Score: 0.98
OURI: nty udent Label: Student Comment: Score: 0.29
OURI: ht nt Label: Student Comment: Score: 0.7

O URI: tion Label: Student Comment: Score: 0.86

O URI: nt Label: Student Comment: Score: 0.86

O URI: n Label: Student Organization Comment: A student organization is an organization Score: 0.82

tOrganiz:

O URI: bt
Score: 0.79

aies/courseware#Student-Interaction-Type Label: Student-Interaction-Type Comment: A type of interaction in which a student engages

O URL: hitpy/semanticscience.org/resource/510 000875 Label: student advisor role Comment: A student advisor role is the role of an Score: 0.73

O Keep current node or property.

Figure 4.7: The recommendations list for the student keyword of Figure Display-
ing the URI, the label, and comments (if available), and the score calculated
by the BR.

The last part of the recommendation step is the calculation of the score and ranking
of the recommendations for each keyword. For this, we use the metrics explained
in Section After developing a context between the results and thereby ranking
the results, we return a list of the top recommendations (the number is based on
the specified limit) for each node and relation of the input ontology. In the list, we
focus on the top recommendations and display the URI, the label, the description,
and the score calculated by the BR of each recommendation for each term. The
key is that we do not show too much information, but cover the most important
information that is provided from the ontology as shown in Figure [2.1L The specific
way the visualization is integrated into Neologism can be seen in Figure 4.7] The
Figure shows the recommendations for the student node. The label and the comment
are retrieved using the rdfs:label and rdfs:comment properties. Generally, the
first recommendation of each list is preselected, so that the user can directly lift the
ontology, based on the recommendations with the highest score. If no recommendations
were found for a keyword, the Keep current node or property option is preselected. This
list of recommendations is displayed for each node and relation separately. The user
can also choose to Keep current node or property if the desired meaning is not listed
within the recommendations.
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4.2.3 Ontology Lifting

After the two phases are completed, the final transformation must be performed,
mainly lifting the created ontology based on the selected recommendations to the
Semantic Web. As mentioned before, we preselect the first recommendation for the
user. This is done because we assume that most users tend to select the recommendation
with the highest score. With the pre-selection, a user can directly press the Lift
ontology button, which appears on the sidebar of Neologism like the Get BatchRecom-
mendation button in Figure 4.3l The Get BatchRecommendation button is disabled
during the selection of the user. The selection is the process by which the user chooses
the recommendation from the lists for each keyword that corresponds to the desired
meaning. In addition, a return button is available, which returns the user to the editing
graph view without applying the recommendations. When pressing the Lift Ontology
button each node and relation is replaced with the selected classes and properties.

Teacher ——Teaches—>»{Student

N\ /

responsible for studies

N

examination paper

Figure 4.8: The ontology from Figure after the lifting process. The originally
specified terms are transformed based on the chosen recommendations.

An example of a lifted ontology is shown in Figure [£.8] All labels of the nodes
and relations are replaced by the selected labels of the classes and properties. This
example is the lifted and improved result of Figure [[.2] Note that if no label from
the recommendation is specified, the original label specified by the user is used. In
addition, the URI is replaced with the URI from the selected recommendation. The
same applies to the description, using the comment from the selected recommendation
if it is present.

An example of a node that was lifted to a class can be seen in Figure It shows
the lifted teacher keyword with its metadata of the chosen recommendation. The
label, URI, and description are replaced by the corresponding selection of the user.
The overall functionalities integrated in Neologism are summarized in the following.

e Live Support: This includes displaying suggestions of keywords within a dropdown-
list, while the user creates or edits nodes or relations as described above.
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Class Name

Teacher

Class URI
http#linkedscience. org/teach/ns#Teacher

Description
Teacher of the course.

Figure 4.9: The teacher keyword and its corresponding metadata (Label, URI, and
description) from the chosen recommendation.

e Standalone Recommender: The recommender is implemented with the connection
to the LOV API and the possibility of integrating local ontologies or other sub-
recommenders and using customizable metrics for ranking different recommenda-
tions.

e Optional Domain Specification: Optional field for the user, where they can
specify a certain domain tag. This tag can be used for domain-specific sub-
recommenders.

e Recommendation Limit Regulator: We have a regulator for the user, where they
can specify the number of recommendations they want to receive.

o Get BatchRecommendation Button: Clicking this button triggers the communica-
tion with the BR.

¢ Visualization: The visualization is implemented in Neologism like Figure|2.1|and
can be seen in Figure 4.7

e Lift Ontology Button: Clicking this button applies the transformation of original
terms in the created ontology to the chosen recommendations from the list (see

Figure [4.7)).

The contributions to the BR as well as its integration into Neologism are merged via
pull-requests to the respective projects and are therefore now included in them. In
the next chapter, we are going to evaluate the implemented version of the BR with
its integration into the ontology editor Neologism. This evaluation is based on a user
study.
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In this section, we evaluate the developed BR and its integration into Neologism. We
choose a user-centered evaluation method. This is due to the difficult comparability
to other BRs as there does not exist such a general recommender, which is focused
on ontology creation, or a dataset for evaluation. We use the example of Figure [1.2
as input for the BR with which we determine suitable default weights of the metrics
inside the BR for this evaluation. The chosen weights for each metric can be seen in
Table [A.T] It is generally difficult to determine perfect weights for all models created
by users, as we already mentioned (see Chapter [2)) the meaning of terms can be very
subjective. Different people may prefer different definitions of terms considering the
context of those terms.

event severity certainty  headline instruction  parametervalue
Schneeverwe Moderate  Likely Amtliche WARNUNG vor SCHN Stellenweise None
Starkwind Minor Likely Warnhinweis vor STARKWIND Null None
Leichter Schn.Minor Likely Amtliche WARNUNG vor LEICFNull <5 [em]
(a)
TeststellentName Testste Standort Test: Standort 1Standort T(Email Internet Stadtteil Latitude Longitude
11-001 Mitsubishi-Ele Siegburgerstri 40591 DAYsseldorf https://coron Oberbilk 51.206.234 6.808.547

11-002 MedCo Testze¢Vogelsanger\ 40470 DAYsseldo info@mecwww.medco-MAqIrsen 5.125.725 6.799.792
11-003  Corona-Test-fUhlandstraAY 40237 DAYsseldo info@smawww.smartm DAlsselt: 51.231.518 6.801.278

(b)

keyword mbox name identifier title description homepage language format issued

Korrupticumbo@: Auswirtiges f3b57b84-MaRnahmen Liste mit M: https://wwdeutsch/ XML  2014-09-25T00:00:00
hotel bast@rv Regionalverlal302c5b POI - Hotels L Daten-Dow https://dat DEU CSV  2019-08-01T00:00:00
Entwicklt RLGS21 (undesminist fc997483-BMZ ProjektcDaten und [ https://wwENG XML  2014-09-25T00:00:00

(©)

Figure 5.1: Excerpts of the three datasets used for evaluation. The storm, the corona
test station, and the datasets dataset can be seen in a), b), and c),
respectively.

For the user-centered evaluation, each user is given a document (see Figure [A.5)
for introducing the tasks they have to perform, as many persons did not have any
prior knowledge regarding ontologies or data modeling in general. The total of 15
participants was divided into 3 groups with 5 members each. Ten of the participants
were students of different backgrounds (e.g., economy, sports, mechanical engineering)
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5 FEvaluation

and the other five were researchers of the Mobility Data Space E]project, working in the
area of mobility. The tasks are based on three different datasets, where each dataset
is processed by five persons. Archived copies of all datasets and the data evaluation
can be found in the git repository [ﬂ

The three datasets cover the topics storm, datasets description, and (corona) test
stations. Excerpts of the datasets can be seen in Figure The corona test station
dataset is obtained from https://opendata.duesseldorf.de. Note that there were
encoding errors (e.g., with the word Diisseldorf), caused by umlauts in the German
language, which we intentionally did not remove in a preprocessing step. The partici-
pants received the dataset as depicted in Figure The storm dataset is created
by using the datasets from the https://maps.dwd.de/geoserver/web/, which makes
German weather data publicly available. The datasets description dataset is a combina-
tion of descriptions of different datasets of the https://www.govdata.de/ website. We
choose these three domains as they can be understood by any user and are covering
a broad range of terminology to test the BR. The storm dataset is processed by the
participants with the mobility background, while the other two datasets are processed
by the students. We make this decision because the storm dataset is more related
to mobility than the others. This allows us to compare how domain experts behave
compared to novices.

For measuring the usability of the implementation, we use the System Usability Scale
(SUS) questionnaire [Brokl13|] that can be seen in Figure It is a measurement
commonly used to compare different systems based on usability. The individual
scenario complexity for each of the users is measured using the After-Scenario question-
naire (ASQ) [Lewi91] that can be seen in Figure Both of these questionnaires are
short and simple and do not go too much into detail but cover the surface of what we
aim to interpret: The complexity of the scenario and the overall system usability of
the BR. In addition, the questionnaires provide comparability to other scenarios and
systems.

Our goal for the user study is to evaluate our BR in a proper way. We do not
aim to present the user with a pre-selected model that already provides optimal
recommendations through previous tests, but rather perform an overall evaluation
of the recommender. Therefore, we decided to select different domains in which
different users create different nodes and relations. This gives us a variety of different
recommendations that we cannot predict and optimize, and therefore we can evaluate
our recommender in a more general way.

As creating a gold standard for ontologies is very difficult we need another verification
system. Therefore, we guide the user during the process of the tasks in a controlled
environment where we verify the user’s desired meaning for a node or relation and
their thoughts during creation. Especially, if the user cannot find proper relations,
we support the user in finding combinations of nodes, which are likely to have a
more intuitive relation. With this guidance, we ensure alignment of the user’s task

1h‘ctps ://www.mobility-data-space.de/
’https://i5.pages.rwth-aachen.de/master-thesis-enis-zejnilovic-data
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5.1 Statistical Evaluation

understanding with its design intent and if the chosen terms make sense. We assume
that the user makes the best possible decision. The evaluation process is as follows:

1. For a given dataset without the header column, find a term for each of the
columns based on the data inside of these.

2. Create classes inside Neologism for each of the columns and a class tied to the
specific dataset. The latter is used as a base for the participant to simplify
finding relations.

3. Create relations between the created nodes. These relations are invented by the
user.

4. Press the Get BatchRecommendation button and choose from the recommended
terms the best fitting ones for each of the nodes and relations designed. If none
is fitting keep your created term.

5. The ontology is lifted by clicking on the Lift Ontology button based on the chosen
recommendations.

6. Fill the SUS and ASQ forms to describe your experience with the tool and the
scenario. For the tool, focus on the Live Support and the Batch Recommendation.
Qualitative feedback is integrated inside the questionnaires.

A large-scale evaluation can be considered for future work. In the current evaluation,
we do not know the users’ decisions if the top 10 ranks of LOV were provided. This
would lead to better comparability but is not possible in practice. The issue is that
we cannot perform multiple evaluations with the same person, because e.g., the order
of the evaluation with or without metrics likely the results. In addition, an evaluation
is a very time-consuming task where most users needed about 60 to 90 minutes.
Maintaining focus even for an evaluation is a difficult task to accomplish.

5.1 Statistical Evaluation

In this section, we describe the difference between the LOV ranking and the metric-
based ranking of the BR. We point out the differences, based on the top 10 rankings
of LOV compared to the BR. In addition, we show the variation of LOV rankings of
the recommendations in the BR chosen by the users.

During the evaluation, we obtain the chosen recommendations from each user. More
precisely, we save the chosen BR rank and check the corresponding rank in LOV
without our metrics. In total, we gathered 145 classes and 53 properties. Note that
the number of properties is much lower than the number of classes, which is due
to the difficulty of creating relations compared to nodes. The evaluation is done by
comparing the results of the BR with the ranking obtained from LOV. This allows us
to distinguish whether the standard ranking provided by LOV is more preferable to
using our customizable metrics.
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Figure 5.2: The distribution in % of class recommendation ranks (a) and property
recommendation ranks (b) in the BR and LOV in. Rank 11 indicates all
ranks >10.

Figure [5.2] shows the percentage of each rank of the recommendations chosen by the
users. The total number of chosen classes is 137 and properties is 26, while in 8 and
27 cases the users kept their created node and relation, respectively. This corresponds
to 5.6 % for the nodes and 51 % for the relations. We can see that rank 1 was chosen
above 50 % of the time, which is the most by far, for the classes as well as properties.
It is remarkable that the BR rank distribution is mainly at the top 3 for the classes and
the top 2 for the properties, while there are still some outliers of about 10 % around
rank 8 and 9 for classes. This implies that users do not tend to only choose between
the upper ranks, but also take lower ranks into consideration. For the LOV rank, it is
noticeable that rank 1 and ranks >10 almost have the same distribution with about 30
% for classes and properties. This shows a tendency for the LOV ranking to provide
solid results with opportunities for improvement through our customizable metrics, as
users have also selected results that have a much lower rank in LOV.
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Figure 5.3: The cumulative distribution of chosen class (a) and property (b) recom-
mendations. The difference of the curves indicates the number of recom-
mendations, that can not be selected using the top 10 of the LOV rankings.
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5.1 Statistical Evaluation

The improvement of the recommendation results by the BR can be seen in Figure [5.3
When we consider the ranks of the chosen recommendations for classes and properties
focusing on the top 10 ranks, we can see the difference of about 20 % to 25 %. This
difference indicates the ranks, which are above 10 assuming that the user would not
have the possibility to choose another recommendation. In 1.38 % of the cases, which
are 2 in total, there were no recommendations available because of the preprocessing
of the recommender. The reason and solution for this will be explained later on. For
properties, this difference is about 10 %, but as we can see in more than 50 % of the
cases no recommendation was chosen.

25 =+

LOW Rank
[ o]
[a]

15 -

10 +---

1 2 3 4 5 & 7 8 ] 10
ER rank

Figure 5.4: The distribution for all selected class recommendations of the BR ranks
(top 10) based on their corresponding LOV ranks (top 50). The dashed
red line indicates ranks above 10. The blue horizontal marks display
the average LOV rank of each BR rank. The black line indicates the
equivalence line of the LOV ranks and the BR ranks. All LOV ranks >10
would not have been visible to the user without the BR re-rankings.

Figure [5.4] shows the variation of the LOV ranks in regard to their corresponding BR
rank only for classes. The (blue) average marker is above the equivalence line (black
line) for every rank except for rank 8. It indicates that the BR re-ranking outperforms
the default LOV rankings. We can see that when using the BR, users tend to choose
a wide range of LOV ranks above rank 10. Although rank 1 occupies the most chosen
class recommendations with more than 50 % it is striking that the BR managed to
provide a variety of recommendations that are not in the top 10. The red dashed line
indicates the threshold of the top 10. The ranks above this threshold cover about 30
% of the total chosen class recommendations (see Figure rank 11). It is noticeable
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5 FEvaluation

that the ranks above 10 are mostly below 35. Only for rank 9 in the BR is the highest
LOV rank above 40 and still chosen by a user. Thus, we managed to cover a broad
range of LOV ranks above rank 10 that were chosen by users. The correlation of the
BR rank to the LOV rank considering the classes is 0.52 and 0.17 for the properties.
In addition, the median of the LOV class ranks is 4 and the average class rank of LOV
is 7.31, while the median of the BR class ranks is 1 and the average class rank of the
BR is 2.66. These statistics show a tendency for the classes that the LOV ranking
can be improved with our metrics. The plot for properties can be seen in Figure [A:3]
We distinguish between classes and properties, as the number of properties is low
and in more than 50 % of the cases (see Figure the users did not choose any
recommendation.

5.2 User Questionnaires

In this section, we summarize the results of the SUS and the ASQ questionnaires.
The SUS score provides comparability of the BR with other systems. The ASQ
questionnaire describes the tendency of the different users in regard to the complexity
of the given scenario.

Quantitative Evaluation

In the following, we explain the quantitative results of the SUS and ASQ questionnaires.

ACERPRATTY NOT ACCEPTABLE MARGINAL ACCEPTABLE

GRADE

scae | E [ D N & [
ADJECTIVE WORST BEST
RATINGS IMAGINABLE POOR OK GOOD E\CEL_LEK’ IMAGINABLE

|.|.|i|.5|.|§.|.|§.|i.1.l
0 10 20 30 40 50 60 70 80 ?0 100

SUS Score 88

Figure 5.5: Grade rankings of SUS scores [Brokl3]. The red mark indicates the
achieved score (88) of the BR.

The SUS score is calculated in the following way. The value chosen for odd questions
is subtracted from 5, while the value for even questions is subtracted by 1. We have
calculated the average SUS score from all participants, which is 88. Figure [5.5 shows
the grade ranking of SUS scores, which is based on ,collected data on the use of SUS
over more than a decade with a variety of different systems and technologies and have
a pool of more than 3,500 SUS results* [Brok13]. Based on this chart, we can grade the
BR based on the calculated SUS score. The acceptability range is acceptable, which is
the minimum requirement for the BR. The grading scale would be B while its adjective
rating is excellent. With this grading, the BR can be compared to other systems. The
results are satisfying and show the tendency that the BR is already in an excellent
state, with possibilities of improvement.
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5.2 User Questionnaires

For the ASQ questionnaire, we interpret score values from 1 to 3 as rather simple,
4 as neutral, and 5 to 7 as rather difficult as there are no standards to interpret the
ASQ results rather than putting the score into its context. Figurel[5.6[shows the answer
distribution of the ASQ questionnaire. Note that the answers for Q3 are focused on
the value 1 mostly, which shows that the users tend to perceive the material provided
(see Figure and the support during the tasks as very helpful. This is also reflected
in the average score, which is 1.3. We can see that the distribution of Q1 is distributed
more than Q2 and especially more than Q3. This shows that there are users, for which
the tasks were much more difficult than for others. For most of the users, the tasks
were rather simple. This tendency can also be noted in the average score, which is 3.1.
In addition, the distribution of Q2 shows that most users tend to be satisfied with the
amount of time taken for the tasks but there are still users, which tend to perceive the
time needed as longer than expected. The distribution is similar to the distribution
of Q1, but with a slightly higher focus on the values from 1 to 3. The average score is
2.6, which shows the tendency of satisfaction with the time taken for the tasks.

7

answer value

question number

Figure 5.6: Answer distributions of the ASQ questionnaire (see Figure . The mark
displays the average answer value for each question. It shows that for Q1
and Q2 mostly 1 to 3 were chosen, while the distribution of Q3 shows that
the max value is 3 and most users chose 1 here.

Generally, the users tend to see the system as beneficial, which can be derived from the
SUS grading result. The given scenario is interpreted as rather simple with a tendency
to neutral, based on our interpretations of the ASQ scores.

Qualitative Evaluation

In the following, we explain the qualitative results of the SUS and the ASQ question-
naires as well as the observations we made during the evaluation process. During
the evaluation, we observed that the Live Support is helpful in many cases, as it
prevents spelling errors and guides users to consistent use of spellings for the same
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word. An example is here the word email, where most users had their own writing
style. The users, who commonly used the suggestions kept the same style. There were
also situations where the Live Support did not show any suggestions. Especially for
words that are more domain-specific and not commonly used, like weather type and
weather warning. This is something that could be improved by adding domain-specific
dictionaries or word sets.

Most users said that in some cases they had chosen other recommendations with
a wrong meaning or done wrong node specifications if the support would not have
been available. Some users prefer fewer recommendations, which is why the regulator
was added after retrieving the evaluation results (see Chapter . In addition, one
user mentioned the missing functionality of recommendations from domain ontologies,
which is a functionality that is considered for future work e.g., integrating the BioPortal
recommender for the biological domain (see Chapter [2)).

Based on the quantitative feedback of the ASQ and the SUS questionnaires we found
out that the tool is very helpful in improving the result of a draft ontology. The user
does not have to do any research but can directly choose from a set of terms of already
existing ontologies. Still, some issues occurred during the user study. Some issues
were mentioned either in the qualitative feedback of the questionnaires or were given
as oral feedback:

e The preprocessing is not optimized as in 1.37 % of the cases we did not receive
a recommendation for classes because of the preprocessing. The camel-case
solution has to be adjusted, as terms like URL or ID got separated into U
RL and I D, which lead to unusable recommendations. This issue also shows
how important the Live Support is, as wrongly spelled terms lead to wrong
recommendations. We fixed this by only applying camel-case preprocessing to
words, where directly after an upper-case letter at least 2 lower-case letters occur.

e Based on the user feedback and the observations we made, we can say that the
language barrier is a major problem. All the persons are not native English
speakers and therefore it was difficult to distinguish the correct word in English,
even for a fluent speaker. This issue could be overcome by including synonyms
and a metric, which assigns synonyms a higher score than words with a different
meaning.

e The recommendations for the properties were in 51 % of the cases not accurate
as only in 49 % of the cases a recommendation was chosen by users. The reason
could be that the property specification varies much more than the specification
of classes. It is difficult to use best practices for creating relations and selecting
properties, especially for users who are not familiar with ontologies. In addition,
the properties already available may be specified in another way than intended
by the user [LGC*21]. In addition, it was difficult for the users to find relations
between nodes in general, which is one reason why we have only about a third of
the relations (53) compared to the nodes (145). These issues could be solved by
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a brief tutorial or introduction for users on how to use best practices to create
properties between classes.

e The results of the LOV API sometimes do not provide the full description of a
class or property. In some cases, the comment is cut off and therefore can not
be interpreted correctly. By clicking on the URI link it is still possible to find
the full description. This is something we contacted the LOV authors for to
make improvements, such that the recommendations can be interpreted better
and gain higher quality.

All in all, the evaluation shows, that the metrics tend to improve the ranking of the
recommendations compared to the standard ranking from LOV. The BR improved
the quality of the draft ontology by adding a description, a label, and the URI of
an already existing class or property. We explained the main issues which occurred
during the evaluation and possible ways how these issues could be solved. In the next
section, we summarize the answers to the research question, the impact of this thesis,
and give an outlook for future work.
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6 Conclusion and Future Work

In this chapter, we summarize the results of the thesis and give an outlook for possible
improvements and future work. We designed and implemented a flexibly extensible
batch recommender for fast ontology prototyping, and extensively evaluated it and
its integration into Neologism. Throughout the thesis, we answered all the research
questions specified in Section In Chapter [2| we described state-of-the-art concepts
in various fields related to this thesis’s topic. We pointed out the focus of this work,
namely the development of a customizable recommender framework that enables the
easy integration of different recommenders and metrics for computing the ranking of
recommendations, focusing on the ontology creation process. We have shown that
there is currently no such framework available. We summarize the answers to these
research questions in the following. Note that the number of the answer is related to
the number of the research question (RQ) from Section

A 1: We developed a concept in Chapter[3| which is focused on a two-phase integration
process of the BR into the ontology creation process. With the Live Support we
aim at preventing spelling errors and therefore retrieving better recommendations
with a more accurate semantic meaning. The preprocessing step focuses on
simply using common design patterns, while the recommendation step mainly
performs the calculation of the ranking and makes recommendations based on a
set of simple metrics.

A 2: 'We managed to provide an infrastructure for a BR, which allows customization
in various fields. This was outlined in Chapter [3] and Chapter 4l With this
infrastructure, we allow adding and removing sub-recommenders. In addition,
the BR provides the functionality of adding and removing metrics as well as
adjusting their corresponding weights. All these specifications influence the BR
and its ranking.

A 3: We created a default set of simple metrics, which are used to provide a useful
ranking of available recommendations. Interpreting recommendations as good
is very subjective, which is why we focused on rather simple metrics and more
customizability rather than a higher complexity in the ranking calculation. Even
with simple metrics, we managed to show that the integrated metrics offer better
results than the default recommendation ranking from LOV (see Chapter [3).
The different metrics are explained in Section [3.4] while its customizability in
the realized BR is described in Section
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A 4: The easiest way was to use an already existing ontology editor (Neologism) and
integrate the BR. We integrated the communication between the editor and
the BR as well as a domain specification and a regulator to specify the desired
number of recommendations. In addition, we provided the possibility to choose
a recommendation for each node and relation of the designed ontology using
a simple visualization technique for the recommendation results. Finally, we
incorporated the functionality of lifting the ontology to the Semantic Web by
using the chosen class and property recommendations and replacing the label,
URI, and description of the corresponding node and relation, respectively. This
was outlined in Section [4.21

The results of this thesis impact the prototyping process of ontologies. We provide a
two-phase approach of a BR, with customizable metrics and sub-recommenders that
influence the ranking of recommendations. This offers the opportunity to customize the
BR based on specific use-cases and domains and achieve optimal prototyping results.
Starting from scratch is not needed as the information from existing ontologies is
provided on demand. In addition, it improves the quality of the created ontology.
Four areas may be considered for future work. First, other visualization techniques
that could improve the usability and other aspects of the recommendation visualization
may be evaluated. Second, the ranking method can be expanded using e.g., ontology
matching as explained in Section Third, other domain-specific sub-recommenders
like e.g., BioPortal could be integrated and bound to the domain using the optional
domain specification of the BR. Finally, the description (label and comments) can be
extended by using other common vocabulary terms (e.g., skos:prefLabel).
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A Extra Figures, Resources, and

Questionnaires

The recommendations are loading...

Figure A.1: The loading screen appears, when pressing the Get BatchRecommenda-

tion button.

Weight and Threshold List

Metric Name Name Name in implementation Value
Wa LABEL_WEIGHT 0.5
DomainMetric wg COMMENT_WEIGHT 0.5
WDomain weightMap: Metricld. DOMAIN 1
Wps PRESUF_WEIGHT 0.7
. We MATCH_WEIGHT 1
PreSufMetric W INFIX_WEIGHT 0.1
WPreSuf weightMap: Metricld. PRESUF 10
DescriptionMetric wq DESCRIPTION_WEIGHT 1
WDescription weightMap: Metricld. DESCRIPTION 1.5
CreatorMetric Wr=LoV LOV-WEIGHT 0-5
WCreator weightMap: Metricld. CREATOR 1
CommonVocabMetricw. = WeommonVocab weightMap: Metricld. COMMONVOCAB 1
Ws SCORE_WEIGHT 0.2
We OCCURRENCES_IN_DATASET_WEIGHT 0.5
wp REUSED_BY_DATASET_WEIGHT 0.5
LOVMetric Vs SCORE_THRESHOLD 0.5
Vo REUSED_BY_DATASET_THRESHOLD 0.4
V8 OCCURRENCES_BY_DATASET_THRESHOLD | 0.4
WLOV Occurrences weightMap: Metricld. LOVOCCURRENCES 1

Table A.1: Weights and thresholds table used for the calculation of recommendations during

the evaluation process.
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Figure A.2: The distribution of class recommendation ranks in BR (a) and LOV (b)
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Figure A.3: The correlation of all selected property recommendations in the BR (top
10) and LOV (top 50). The blue horizontal marks display the average
LOV rank of each BR rank. The black line indicates the equivalence line
of the LOV ranks and the BR ranks. All LOV ranks >10 are not visible
to the user without the BR re-rankings.
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The difference of the curves indicates
the number of recommendations that can not be selected using the top
10 of the LOV rankings. In 17.7% of cases, no recommendations were
chosen.
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Ontology Prototyping Introduction

We support the understanding of ontology prototyping for users without experience as well. This is
emphasized with examples in the following. The following example describes the process that is also
used for the real evaluation process. We use a dataset without the header and give the user a gen-
eral keyword like pizza, which describes where this dataset belongs to. The header is then to be mo-
delled with relations inside Neologism using the integrated functionalities.

The following pizza dataset describes certain pizzas with different attributes. Note that we removed
the header we have chosen to describe the dataset.

2 | margherita nermal tomatosauce none none none mozarella 800€
3 hawail thin tomatosauce pineapple  ham none mozarella 800€
4 hollondaise thin sauce hollend broceoli none shrimp  mezarella 850¢€
5 | quattro formagsi  thick none none none none gorgonzola, moazarella, emmental, blue 7,50 €
6 funghi thin tomatosauce mushroom  none none gouda 7,00 €
7 |salami normal tomatosauce none salami none mozarella 7,00€
8 | tonno thick tomatosauce onions none tuna mozarella, gouda 800€
9 |speciale normal tomatosauce mushroom  salami,ham  none mozarella 850€

E

The headers you would use to describe these columns can not be wrong or right. Still, it is possible to
be too precise or too general, but this is also very subjective. Next you can see the header we chose
to describe this dataset.

name base sauce topping meat fish cheese price

With this header, we modelled the dataset inside the ontology editor (without using the recommen-
der process as we just want to emphasize the modelling process here).

y Teacher Teaches tuden
with costs

M |zza W'thw responsible for studies

with  with SONtaing

o
@ meat examination paper

The figure on the left shows one possible solution for modelling the pizza dataset. The arrows indi-
cate the relationship between each of the nodes (attributes of the dataset above).

To emphasize a broader view, we show another education example. The model on the right, shows a
possible student-teacher-exam data-model (this data-model is a result using our recommender).

The aim of this evaluation process is to focus on the developed functionalities. After you finished the
task, you will get two questionnaires to describe your experience with the functionalities and the res-
ults. During your usage of the editor, you should focus on the following functionalities:

e Domain specification (you can specify a domain inside Neologism that could enhance the
ranking of recommendations)

e Live Support (During node and property creation, you will get suggestions for keywords that
you could use while typing)

e Batch Recommender (When you finish the modelling process you can press a button to get
recommendations from already existing ontologies)

Figure A.5: The ontology introduction document, which each participant received.

gives an overview of the task that has to be performed and examples.

It
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v

System Usability Scale

For each of the following statements, please mark one box that best describes your reactions to
Ontology Prototyping today.

Strongly
disagree

1. Ithinkthat I would like to use Ontology Prototyping frequently.
2. Ifound Ontology Prototyping unnecessarily complex.
3. Ithought Ontology Prototyping was easy to use.

4. Ithink that | would need the support of a technical person to be able to use
Ontology Prototyping.

5. Ifound the various functions in Ontology Prototyping were well integrated.
6. Ithought there was too much inconsistency in Ontology Prototyping.

7. lwould imagine that most people would learn to use Ontology Prototyping
very quickly.

8. Ifound Ontology Prototyping very cumbersome (awkward) to use.

9. Ifeltvery confident using Ontology Prototyping.

DO Do oo
DO Do oo
DO Do oo
N I o 0 R A M
T T I A

10 Ineeded to learn a lot of things before | could get going with Ontology
Prototyping.

Figure A.6: The used System Usability Scale questionnaire.



Part 1. After Scenario
Questionnaire (ASQ)

Instructions

The ASQ, developed by (Lewis, 1995), is to be given to a study subject after he/she has completed a
normal condition scenario. The user is to circle their answers using the provided 7 point scale (the lower
the selected score, the higher the subject’s usability satisfaction with their system). After the user has
completed the ASQ, the ASQ score can be calculated by taking the average (arithmetic mean) of the 3
questions. If a question is skipped by the subject, the ASQ can be calculated by averaging the remaining
scores.

ASQ

The following was developed by (Lewis, 1995):
Scenario 1
1. Overall, | am satisfied with the ease of completing this task.

STRONGLY AGREE 1 2 3 4 5 6 7 STRONGLY DISAGREE

2. Overall, | am satisfied with the amount of time it took to complete this task.

STRONGLY AGREE 1 2 3 4 5 6 7 STRONGLY DISAGREE

3. Overall, | am satisfied with the support information (on-line help, messages, documentation) when
completing this task.

STRONGLY AGREE 1 2 3 4 5 6 7 STRONGLY DISAGREE

1 I eHealth Observatory — UB — ASQ and PSSUQ v3.0 — Feb. 15, 2011

Figure A.7: The used After-Scenario questionnaire.
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